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In two earlier papers, we studied the statistical and mechanistic structure of the tur-
bulent boundary layer under a stress-free (clean) free surface. Findings there, such as
the presence of inner and outer surface layers, are very much the direct result of the
absence of shear stresses at the surface. The latter condition is easily lost when the
surface is contaminated and surface elasticity varies with space and time. In this
paper we consider the effect of surfactant on features of the free-surface turbulent
flow. We perform direct numerical simulations of the Navier–Stokes equations subject
to surfactant-laden free-surface boundary conditions for varying Reynolds and
Marangoni numbers and low Froude numbers. As expected, the Marangoni effect
decreases the horizontal turbulence intensity and normal vorticity at the surface. The
direct effect on the turbulent kinetic energy is an increase in the dissipation and
viscous diffusion and a decrease in the production near the surface relative to the
clean case. The most prominent effect of the presence (of even a small amount) of
surfactant is the drastic reduction in the surface divergence and the associated sharp
decrease of up- and downwelling at the surface which has direct implications to
near-surface turbulent transport. The observed surfactant effects on turbulent kinetic
energy budget can be attributed to the generation of Marangoni vorticity at the free
surface by approaching hairpin vortices. The Marangoni effect has also a direct effect
on the boundary-layer structure, causing an increase of the thickness of the boundary
layer and in the maxima of the mean shear near the surface. For moderate values of
the Marangoni number, up-/downwelling effectively vanishes and the flow approaches
a state independent of the Marangoni number. Guided by these results and to obtain
theoretical insight, we develop a similarity solution for the mean flow. The analytic
solution agrees well with the numerical data and provides precise measures for the
multi-layer structure of the boundary layer. Based on the theoretical model, we derive
scaling laws for the thickness of the inner and the outer boundary layers, which are
also confirmed by numerical simulations.

1. Introduction
The turbulent boundary layer at a free surface plays an important role in the

transfer of momentum, mass and heat across a gas–liquid interface. These are of direct

† Present address: Department of Civil Engineering, The Johns Hopkins University, Baltimore,
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importance in environmental and industrial applications, examples of which include
the transfer of greenhouse gases between the atmosphere and the ocean, spreading of
oil spills, remote sensing of ship wakes, and industrial processes involving gas–liquid
flows. Despite this, our understanding of the fluid dynamics of free-surface turbulent
boundary layers is still relatively limited.

Much existing work is based on the assumption of a clean free surface and vanishing
shear stress at the surface. In natural waters, however, surface-active agents, i.e.
surfactants (see Edwards, Brenner & Wasan 1991), are commonly present due to, for
example, marine exudates and organic contaminants (Frew 1997; Hunter 1997). The
presence of surfactants creates variations in the surface stresses which depend on
concentration of the contaminant. The result is a closed-loop process (the Marangoni
effect) wherein the concentration of surfactant is changed by the flow transport; the
change in the surfactant concentration causes a variation of the surface tension, which
in turn affects the fluid motion (see e.g. Sarpkaya 1996).

The ubiquitous presence of surfactants on nature waters and the significant effect
of even small amounts of surfactants on the hydrodynamics have brought much
attention to the problem of interactions between surfactants and underlying vortical
and turbulent flows. Experimental investigations include Bernal et al. (1989) who
showed that when vortex rings and vortex pairs move normal to a contaminated
surface, generation of secondary and tertiary surface vorticities limit the outward
motion of the vortex ring and force the vortex pair to rebound. Hirsa & Willmarth
(1994) considered the interaction of a vortex pair with a surfactant surface and
obtained detailed measurement of the flow field. The dynamics of vortex connection
at a contaminated surface was studied experimentally by Gharib & Weigand (1996)
for vortex rings and by Willert & Gharib (1997) for spatially modulated vortex
pairs. Other laboratory measurements of surfactant effects include Anthony, Hirsa &
Willmarth (1991) for a submerged turbulent jet, McKenna (2000) for an oscillating
grid-stirred turbulence, and Flack, Saylor & Smith (2001) for turbulent flows beneath
an air–water interface undergoing evaporative convection.

There are also numerical studies of surfactant-flow interactions (although somewhat
more limited compared to experiments). Wang & Leighton (1990) and Tryggvason
et al. (1992) considered the problem of a vortex pair approaching a surfactant surface
for the zero-Froude-number case and qualitatively confirmed the observations of
Bernal et al. (1989). Ananthakrishnan & Yeung (1994) investigated the effects of
surfactants on surface waves generation by rising vorticity. They found that globally
the free-surface deformation is damped, although locally short waves may be
steepened. Tsai & Yue (1995) studied the mechanism of laminar vortices interacting
with a contaminated surface at low Froude numbers. We concluded that the interac-
tions are intermediate between, but qualitatively distinct from, those near a clean
surface or a no-slip boundary. We also considered the effect of surfactant solubility
and found that the surfactant effect are moderated by the sorption kinetics near the
surface. Tsai (1996) extended this work to the case of a turbulent shear flow and
found that the blocking effect by the surface is significantly reduced by surface
contamination. He also found that attenuation of the surface fluid renewal by
surfactants is responsible for a reduction of scalar exchange rate at the interface.
Smith et al. (2001) studied the effects of a rising vortex pair on the thermal boundary
layer at an air–water interface. Both simulations and measurements were performed
and the results were found to be in good agreement. They related the variations
of surface temperature to the underlying hydrodynamics and found that the surface
straining rate is a controlling parameter.
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Figure 1. Schematic of a turbulent shear flow underneath a free surface.

For the turbulent shear layer underneath a clean stress-free surface, Shen et al.
(1999) and Shen, Triantafyllou & Yue (2000) (hereinafter referred to as P1 and P2,
respectively) performed a systematic DNS/analytic investigation. We found that near
the free surface the turbulent flow exhibits a distinct multi-layer structure: as the
surface is approached, the mean shear first increases over an outer layer and then
decreases rapidly over an inner layer. Thus despite the fact that the free surface is
shear free, the mean shear of the flow has a local peak just underneath the surface.
To explain this phenomenon, P2 developed an analytic theory based on an assumption
of self-similarity of the mean flow. The similarity solution was found to agree well with
results of our direct numerical simulations. It also provides a quantitative definition for
the surface boundary layers and scaling relationships for the surface-layer thickness,
which were confirmed by simulations. This paper is an extension of P1 and P2 to the
case where stress-free boundary conditions no longer obtain at the surface owing to
the presence of surfactants.

The present study is both numerical and theoretical. We perform direct numerical
simulations (DNS) for a turbulent shear flow under a surfactant-contaminated free
surface. The ensemble DNS data are used to obtain the effects of surface elasticity
on the free-surface boundary layer, the turbulence kinetic energy balance, and the
near-surface vortical structures and their effect on surface deformation. Similar to
P2, we then develop an analytic solution for the mean flow based on a similarity
argument. The theoretical solution compares well with the simulation results. Based
on this theoretical solution, we are able to deduce scaling laws for the boundary-layer
thickness, which again agree well with the DNS data.

2. Problem definition and mathematical formulation
2.1. Canonical problems and governing equations

To investigate the effect of surfactant on turbulent flows, we consider as a canonical
problem the interaction of a turbulent free shear flow with a surfactant-contaminated
free surface (figure 1). The flow has a two-dimensional mean shear with an inflection
in the velocity profile in the bulk flow. The shear rate vanishes at the free surface
and in the deep region. Turbulence is first generated in the bulk flow because of
inflection instability, and then interacts with the free surface. In this flow, there is
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no mean pressure gradient (in other words, there is no horizontal body force). We
assume that there is no external stress applied above the free surface, i.e. the wind
stress is negligible. We also assume that the bottom is deep and its effect is small
(in numerical simulations the bottom boundary is treated as a free-slip surface). As
a result, as time evolves the shear flow is flattened out by diffusion, while the total
momentum of the flow is constant in time.

As shown in figure 1, the frame of reference has axes x, y and z pointing in the mean
flow streamwise, mean flow spanwise, and vertically upward directions, respectively.
The origin is located at the undisturbed free surface. In this study we consider low
Froude numbers so that the magnitude of surface deformation is small. This enables
us to apply linearized free-surface boundary conditions at z = 0.

The velocity components ui (also denoted as u, v, or w) are governed by the
Navier–Stokes equations and the continuity equation, which in tensor notation are:

∂ui

∂t
+

∂(uiuj )

∂xj

= − ∂p

∂xi

+
1

Re

∂2ui

∂xj∂xj

, i = 1, 2, 3, (2.1)

∂ui

∂xi

= 0. (2.2)

Here and hereinafter, all variables are normalized by a characteristic length scale
L0 and a characteristic velocity scale U0. As will be shown in § 2.2, the mean shear
flow velocity profile at t = 0 is used to define L0 and U0. The dynamic pressure p is
normalized by ρU 2

0 , where ρ is the fluid density. The Reynolds number is defined as
Re ≡ U0L0/ν, with ν the kinematic viscosity.

The complete derivation of the free-surface boundary conditions for a Newtonian
interface in the presence of surfactants can be found in Scriven (1960), Edwards
et al. (1991) and Zhang (2001). We employ the linearized version, which is consistent
with the assumption of small free-surface deformation. The linearized kinematic free-
surface boundary condition is

∂h

∂t
= w − ∂

∂x
(uh) − ∂

∂y
(vh) on z = 0, (2.3)

where h is the free-surface elevation.
The balance of normal and tangential stresses at the free surface is expressed in

the following dynamic boundary conditions:

p =
h

Fr2
+

2

Re

∂w

∂z
−

(
∂2h

∂x2
+

∂2h

∂y2

)
σ

We
on z = 0, (2.4)

1

Re

(
∂u

∂z
+

∂w

∂x

)
=

1

We

∂σ

∂x
on z = 0, (2.5)

and
1

Re

(
∂v

∂z
+

∂w

∂y

)
=

1

We

∂σ

∂y
on z = 0. (2.6)

Here Fr ≡ U0/
√

gL0 is the Froude number with g the acceleration due to gravity. The
parameter We ≡ ρU 2

0 L0/σ0 is the Weber number, while σ0 is the equilibrium value of
the surface tension in the absence of flow motion. In general, the surface tension σ

(normalized by σ0) in (2.4)–(2.6) varies in space and time because of variation in the
surfactant concentration caused by flow motions. Let γ be the surfactant concentra-
tion normalized by the equilibrium (when the fluid is at rest) value γ0. The equation
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of state for the surface elasticity, which specifies the dependence of σ on γ is

σ − 1 = Ma(1 − γ ). (2.7)

Here Ma ≡ (γ0/σ0)(dσ/dγ ) |γ = 1 is the Marangoni number of the surfactant, which
measures the dependence of surface tension on the surfactant concentration. For a
clean surface, Ma equals zero. For simplicity, σ is assumed to be a linear function of γ .
This assumption is valid for small variation of γ , which is the case in our simulations.
In general, the presence of surfactants also introduces other surface stresses associated
with dilational and shear viscosities of the surfactant (see Edwards et al. 1991). For
typical values of these (and for the quantities such as the mean flow characteristics we
are interested in), the effects are found to be of only secondary importance compared
to those due to surface elasticity (see e.g. Zhang 2001). In this work, for simplicity,
we focus only on the effect of surface elasticity on the underlying turbulent flow.

The transport equation for γ (x, y, t) is

∂γ

∂t
+

∂(uγ )

∂x
+

∂(vγ )

∂y
− 1

Pes

(
∂2γ

∂x2
+

∂2γ

∂y2

)
= 0 on z = 0, (2.8)

where Pes ≡ U0L0/D
s is the surface Péclet number with Ds the surface diffusivity of

the surfactant.
We use periodic conditions in the horizontal directions. At the bottom z = −H , we

apply the free-slip condition

∂u

∂z
=

∂v

∂z
= w =

∂p

∂z
= 0. (2.9)

2.2. Numerical method

The numerical method of the DNS follows closely that in P1. The governing equations
subject to the boundary conditions given in § 2.1 are solved using a finite-difference
discretization. We use a sixth-order finite-difference scheme in the horizontal directions
and a second-order scheme in the vertical direction. An explicit (second-order Runge–
Kutta) time integration scheme is used. The pressure is solved via a Poisson equation,
which is obtained by taking the divergence of (2.1) and involving (2.2) at the next
time step. The only difference with P1 is the presence of additional Marangoni stress
terms in the dynamic free-surface conditions and the transport equation (2.8) for the
surfactant concentration. These are handled in a straightforward way in the finite-
difference scheme. Note that we can take advantage of explicit time integration (which
is cheaper computationally and simpler in treatment of the boundary conditions)
because of the free-slip bottom boundary we impose. For cases with strong boundary
shears such as open-channel flows, for example, fractional-step methods with implicit
schemes for the viscous terms are usually required to prevent instability at the channel
bottom (e.g. Kim & Moin 1985). We have applied both approaches to the present
problem with identical results.

The simulation starts with an initial mean velocity profile

〈u〉(z, t = 0)

U0

= sech2

(
0.88137

z

L0

)
. (2.10)

Small-amplitude divergence-free velocity noise is imposed upon this initial field,
serving as seeds for the turbulence. The profile (2.10) corresponds to the mean
velocity measured in the wake of a NACA 0003 hydrofoil (Mattingly & Criminale
1972). The mean shear flow is unstable and energy is transfered from the mean flow
to turbulence. We focus on the later stage of evolution when turbulence is fully
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Grid q2/2 ωiωi/2 (∂w/∂z)′rms γ ′rms

962 × 128 0.00260 0.276 0.00557 0.0469
1282 × 192 0.00279 0.317 0.00602 0.0518
1922 × 256 0.00282 0.307 0.00594 0.0528

Table 1. Comparison of surface values of turbulent kinetic energy, enstrophy, surface diver-
gence fluctuation, and surfactant concentration fluctuation obtained using three different
computational grids. Ma = 0.1 and Re= 700.

developed. As will be shown, at long times, the mean velocity acquires a self-similar
profile.

In (2.10), 〈u〉 denotes the mean value of u. Throughout this paper, a mean value
is consistently defined using plane-averaging because of the homogeneity of the flow
in the horizontal directions. For later reference, for a physical variable f (x, y, z, t),
〈f 〉(z, t) is the mean value; f ′(x, y, z, t) = f (x, y, z, t) − 〈f 〉(z, t) denotes its fluctua-
tion; and f ′rms(z, t) =

√
〈f ′(x, y, z, t)2〉 the root-mean-square fluctuation. To ensure

statistical convergence, for each physical case we perform twenty-five independent
simulations using different initial random seeds. The results presented in this paper
are ensemble-averaged over the twenty-five DNS realizations.

Based on the scales U0 and L0 of the initial mean velocity profile (2.10), we consider
three Reynolds numbers Re =700, 1000 and 1400. The range of Re is limited in the
DNS by the requirement of resolving all the length scales in the turbulent flow. We
consider Froude numbers in the range Fr = 0 ∼ 0.7. The Weber number is set to be 10.
This range of parameters corresponds to water flows with velocity scale O(10−1) m s−1

and length scale O(10−2) m.
To investigate the effects of surfactant elasticity, we repeat our simulations for a set

of Marangoni numbers in the range Ma= 0 ∼ 0.2 (the surface Péclet number Pes is set
to be 1000). Marangoni numbers in this range are comparable with values (estimated
by the ratio of measured surface elasticity to surface tension) in laboratory experiments
involving synthetic and natural surfactants (e.g. Lopez & Hirsa 2000; McKenna 2000;
Hirsa, Lopez & Miraghaie 2001; and Barger 1991; Frew & Nelson 1992; Frew 1997).
The dependence of the results over the range of Ma is discussed in § 3.4. There
is generally a (small) value of Ma (typically much less than 0.1) above which the
results differ appreciably from those for a clean free surface (see e.g. figure 15).
For definiteness, for most of the subsequent results, we choose Ma= 0.1 as the typical
case to illustrate the effects of surfactant as compared to the clean Ma =0 case.

The size of the computation domain is Lx × Ly = 10.4722 (horizontally) by Lz = 6
(vertically). We use a 1282 (horizontal) × 192 (vertical) grid. The choice of these com-
putation parameters and the numerical scheme have been validated in detail. Table 1
shows a typical example of the convergence test. The values of turbulent kinetic
energy and enstrophy at the free surface, surface divergence fluctuation, and surfactant
concentration fluctuation are compared among three different levels of computation
resolution. The difference is found to be negligible. Additional convergence test results
similar to P1 and P2 have also been obtained and will not be repeated in this paper.

3. Numerical results
In this section we present the DNS results. By comparing cases of Ma = 0 and

Ma= 0.1, we show the effects of surfactants on surface-layer structure (§ 3.1), surface
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divergence and free-surface signature (§ 3.2), and turbulent kinetic energy budget
(§ 3.3). In § 3.4, we present a summary and discussions on the Marangoni-number
dependence.

3.1. Effects of surfactant on surface-layer structure

We first present an overview of the flow field obtained from numerical simulation. For
illustration purposes, we focus, unless otherwise indicated, on cases with Re = 700.
The results of other Reynolds numbers will be presented and discussed in § 4. Figure 2
shows the time evolution of the profiles of mean velocity and turbulent kinetic energy.
As time increases, the mean shear flow is flattened out by turbulence diffusivity and
molecular viscosity. The instability mechanism of the shear flow transfers energy from
the mean flow into turbulence. At a later stage of flow evolution, the turbulence is
fully developed and turbulence production is roughly balanced by dissipation. In this
study, we focus on this later stage.

Figure 2(a) represents the clean-surface case and figure 2(b) the contaminated-
surface case. The slope of the mean velocity near the surface is much steeper in the
contaminated-surface case than that in the clean-surface case. As was shown in P2, the
mean shear variation offers a concise description of the free-surface boundary-layer
structure.

Comparison between figures 2(a) and 2(b) reveals that the presence of surfactant
reduces turbulent kinetic energy near the free surface. This reduction is caused by
the surface elasticity of the surfactant which absorbs part of the turbulent kinetic
energy of the fluid. Convection of turbulent fluid motions results in a non-uniform
distribution of surfactant concentration, which affects the distribution of surface
tension and creates gradients in surface-tension force. A typical example is shown
in figure 3, which plots an instantaneous distribution of surfactant concentration
γ (x, y) and the surface-tension gradient (∂σ/∂x, ∂σ/∂y). High value of γ results in
low value of σ so that the surface-tension force points from high γ regions to low γ

regions. These surface-tension gradients serve as surface elasticity and they constrain
horizontal motions u′ and v′ (plotted in figure 4).

The decrease of turbulence intensity near a surfactant-contaminated surface has
been reported in several papers. For grid-stirred turbulence, McKenna (2000) found
that the turbulence fluctuation velocity measured at a contaminated surface is about
half of that at a clean surface. For evaporative convection at a surfactant surface,
Flack et al. (2001)’s experimental measurements show that the turbulence kinetic
energy obtains its maximum value at the clean surface, while for the surfactant case
it is much damped and the maximum value is located away from the surface. Tsai
(1996) obtained numerical velocity intensity profiles similar to those in figure 2, despite
the fact that the Marangoni number he used (Ma= 0.5) is much higher than ours
(Ma =0.1). In § 3.4, we investigate the Marangoni number effects and show that, for
high values of Ma, the variation of velocity intensity with Ma is small.

As discussed in P1, there exists a two-layer structure in the turbulence field near the
free surface: the kinetic constraint of the surface on vertical motion creates a surface
outer layer, within which velocity components are anisotropic; on the other hand, the
dynamic free-surface boundary conditions create an inner layer where components
of stress, vorticity, and vertical derivative of velocity are anisotropic. Figure 4 shows
that the inner and outer layers are manifested in the DNS results for both the clean-
and contaminated-surface cases. The turbulence statistics inside the surface layers are,
however, substantially different between these two cases.
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Figure 2. Time evolution of the profiles of the mean streamwise velocity 〈u〉 and the turbulent
kinetic energy q2/2 ≡ 〈(ui − 〈ui〉)2〉/2, i =1, 2, 3, for (a) the clean-surface case (Ma= 0); and
(b) the contaminated-surface case (Ma = 0.1). · · · · · · ·, t = 0; – – – –, t = 20; – · – · – , t = 40;
−−− −−−, t =60; ————, t = 80.

Over the outer layer, fluctuation of the vertical velocity w′rms diminishes towards the
free surface. Near the clean surface, the variations of horizontal velocity components
u′rms and v′rms are relatively small, because of the lack of constraint on horizontal
motions. The surfactant-contaminated surface, however, possesses surface elasticity
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Figure 3. Instantaneous contours of surfactant concentration γ (x, y) and distribution of
surface-tension gradients (∂σ/∂x, ∂σ/∂y). Vectors of surface-tension gradients are plotted at
every four grid points and their magnitude is proportional to the arrow length. t = 70.

which does not allow complete freedom in the horizontal motion. As a result, the
magnitude of horizontal velocity u′ and v′ near a surfactant surface is smaller than
that in the surfactant-free case (figure 4).

Inside the inner layer, as the free surface is approached, the tangential stress
approaches the surface value specified by the dynamic boundary conditions (2.5) and
(2.6). The surface value is zero for the clean-surface case, while for the surfactant
case, it has large magnitude because of surface elasticity. In (2.5) and (2.6), since
w is small near the surface, ∂u/∂z and ∂v/∂z dominate ∂w/∂x and ∂w/∂y. As a
result, the vorticity component has similar behaviour to the strain rate (or the stress).
Figure 4 shows that inside the inner layer, horizontal vorticity components decrease
towards a clean surface, but increase towards a contaminated surface. This sharp
increase of horizontal vorticities is in agreement with the vorticity intensity profile
shown in Tsai (1996). Figure 4, in addition, shows that the fluctuation of ∂u/∂z also
behaves similarly near a surfactant surface.

3.2. Effects of surfactant on instantaneous flow observables on the free surface

The presence of surfactant directly affects the upwelling and downwelling fluid
motions near a free surface. This can be seen by rewriting the surfactant transport
equation (2.8) as

∂γ

∂t
+ u

∂γ

∂x
+ v

∂γ

∂y
+ γ

(
∂u

∂x
+

∂v

∂y

)
− 1

Pes

(
∂2γ

∂x2
+

∂2γ

∂y2

)
= 0 on z = 0. (3.1)
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Figure 4. Profiles of fluctuation magnitude of velocity components u′rms
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ω′rms
i , vertical gradients of velocity (∂u/∂z)′rms, and surface divergence (∂u/∂x + ∂v/∂y)′rms, for

(a) the clean-surface case Ma = 0 (t = 60); and (b) the contaminated-surface case Ma = 0.1
(t = 70).

The fourth term in the above, γ (∂u/∂x + ∂v/∂y) = −γ ∂w/∂z, measures the change
in the surfactant concentration γ due to the upwelling (‘splat’ on the surface from
below) and downwelling (‘anti-splat’ on the surface) of the flow. As γ changes, the
surface tension σ also changes (equation (2.7)), which in turn creates a gradient
of surface tension to counter the surface upwelling/downwelling motions. Figure 4
shows that the r.m.s. value of the surface divergence, ∂u/∂x + ∂v/∂y, which measures
the strength of upwellings and downwellings, is substantially reduced when the free
surface is contaminated by surfactants. For large Ma, Tsai (1996) reported on the time
evolution of surface divergence at z = 0 where a similar conclusion can be obtained.

The effect of surfactant on surface divergence can also be seen clearly from the
instantaneous flow field. Figure 5 plots the surface contour of (∂u/∂x + ∂v/∂y)|z=0

and velocity vectors (u′, v′)|z=0. While splats (marked as ‘A’ and ‘B’) and anti-splats
(marked as ‘C’) are manifested at the clean surface, they are lacking at the surfactant-
contaminated surface.

The surface features shown in figure 5 are in excellent qualitative agreement
with digital particle image velocimetry (DPIV) measurements by McKenna (2000) for
oscillating grid-stirred turbulence under clean and surfactant surfaces. Figures 7–18(a)
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contours of surface-normal vorticity ωz, at the free surface for (i) the clean-surface case
(Ma =0) and (ii) the contaminated-surface case (Ma= 0.1). Only partial regions of the free
surface are plotted. t = 70. Note that the scales of ∂u/∂x + ∂v/∂y are substantially different
between the clean and contaminated cases.

and (b) there, which plot instantaneous velocity vectors and surface-normal vorticity,
clearly show that the clean surface is dominated by surface bursting, while the
surfactant case shows very weak flow divergence.

In figure 5, we also plot the contours of the vorticity normal to the free surface
(selective surface-connecting vortices are marked as ‘D’, ‘E’ and ‘F’). It is shown that
the presence of surfactant reduces the magnitude of ωz, but not by much. This fact can
also be seen from the statistics of the r.m.s. value of ωz plotted in figure 4. Similarly,
for the velocity fluctuation (u′, v′), only the portion associated with surface divergence
is substantially reduced, while the portion corresponding to surface-normal vortical
motion is less affected.
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The disparate effects of surfactant on splats/anti-splats and surface-normal vorticity
motions can be explained through (3.1), which shows that it is surface divergence
not vorticity that enters as a source/sink term for the surfactant concentration. In
summary, then, it is the decrease in surface divergence (rather than changes in velocity
or vorticity fluctuations) that is the most prominent indicator and quantifier of the
surfactant effects. Finally, we remark that near-surface turbulence diffusion processes
are known to be strongly dependent on up-/downwelling at the surface (e.g. Jähne
& Haussecker 1998). The present finding has a direct and significant implication to
turbulence transport in the presence of surface contamination (Shen 2001).

3.3. Effects of surfactant on the budget of turbulent kinetic energy

We consider here the effects of surfactant on the budget of turbulent kinetic energy
near the free surface. For turbulent flows with a mean sheared velocity 〈u〉(z), the
equations for the diagonal components of the Reynolds-stresses 〈u′2〉, 〈v′2〉 and 〈w′2〉
are (see e.g. Hinze 1975, p. 323):

∂〈u′2〉
∂t

= −2〈u′w′〉∂〈u〉
∂z︸ ︷︷ ︸

Puu

+ 2

〈
p′ ∂u′

∂x

〉
︸ ︷︷ ︸

Φuu

− 2

Re

〈
∂u′

∂xk

∂u′

∂xk

〉
︸ ︷︷ ︸

εuu

+
1

Re

∂2〈u′2〉
∂z2︸ ︷︷ ︸

Duu

− ∂

∂z
〈u′2w′〉︸ ︷︷ ︸
T v

uu

, (3.2)

∂〈v′2〉
∂t

= 2

〈
p′ ∂v′

∂y

〉
︸ ︷︷ ︸

Φvv

− 2

Re

〈
∂v′

∂xk

∂v′

∂xk

〉
︸ ︷︷ ︸

εvv

+
1

Re

∂2〈v′2〉
∂z2︸ ︷︷ ︸

Dvv

− ∂

∂z
〈v′2w′〉︸ ︷︷ ︸
T v

vv

, (3.3)

∂〈w′2〉
∂t

= 2

〈
p′ ∂w′

∂z

〉
︸ ︷︷ ︸

Φww

− 2

Re

〈
∂w′

∂xk

∂w′

∂xk

〉
︸ ︷︷ ︸

εww

+
1

Re

∂2〈w′2〉
∂z2︸ ︷︷ ︸

Dww

− ∂

∂z
〈w′3〉︸ ︷︷ ︸
T v

ww

− 2
∂

∂z
〈p′w′〉︸ ︷︷ ︸
T

p
ww

. (3.4)

Adding (3.2)–(3.4), we obtain the equation governing the evolution of the turbulent
kinetic energy 〈u′

iu
′
i/2〉:

∂〈u′
iu

′
i/2〉

∂t

= −〈u′w′〉∂〈u〉
∂z︸ ︷︷ ︸
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− 1

Re

〈
∂u′

i

∂xk

∂u′
i

∂xk

〉
︸ ︷︷ ︸

εk

+
1

Re

∂2〈u′
iu

′
i/2〉

∂z2︸ ︷︷ ︸
Dk

− ∂

∂z
〈(u′

iu
′
i/2)w′〉︸ ︷︷ ︸

T v
k

− ∂

∂z
〈p′w′〉︸ ︷︷ ︸
T

p
k

.

(3.5)

In (3.5), P is the production rate; Φ the pressure–strain correlation; ε the dissipation
rate; D the viscous diffusion; T v the transport due to velocity fluctuations; and T p is
the transport due to pressure fluctuations. Note that the shear flow considered here
varies rather slowly in time. As a result, the left-hand sides of (3.2)–(3.5) are small
and the terms on the right-hand sides of each equation are in approximate balance.

Figure 6 plots the terms in the budget equations for both the clean- and
contaminated-surface cases. We consider the effects of surfactants on each of these
terms. In the shear flow, energy is extracted from the mean flow into turbulent motions
through the production term P . Because the flow is statistically homogeneous in
the horizontal directions and because the mean velocity is a function of z only, the
streamwise velocity u′ is the only component that receives energy directly from the
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mean flow. The equations for 〈v′2〉 and 〈w′2〉 ((3.3 and (3.4)) do not have a production
term. In general, P decreases as a clean surface is approached because of reduction
of the vertical velocity fluctuation w′ throughout the outer layer and the reduction
of the mean shear rate ∂〈u〉/∂z within the inner layer. Figure 6 shows that in the
presence of surfactant, the production rate also decreases towards the surface, but at
a rate faster than that of the clean-surface case. This can be attributed to the fact
that the velocity fluctuations u′ and w′ are reduced by the elasticity of the surfactant
surface. Further away from the surface, over the region of the outer layer, however,
the production rate is larger in the contaminated-surface case. This is because the
mean shear rate ∂〈u〉/∂z is substantially enhanced beneath the contaminated surface
(plotted in figures 16a and 19). The variation of the mean shear is investigated in
detail in later sections of this paper (§ § 4.1–4.4).

After energy is transferred from the mean flow to the streamwise turbulent motions
u′, it is further redistributed among the three velocity components through the
pressure–strain correlation term, Φ . In the bulk flow, as expected, Φuu is negative,
while Φvv and Φww are both positive (figure 6). As the free surface is approached,
however, Φww becomes negative and Φuu becomes positive. This variation is caused by
the constraint of the surface on fluid vertical motions. In the presence of surfactants,
because velocity fluctuations (of all the three velocity components) are reduced by
surface elasticity, the magnitude of inter-component energy transfer is reduced at the
near-surface region.

The term ε, which is always negative, measures the rate of energy dissipation
due to viscosity. Figure 6(d) shows the significant difference caused by the presence
of surfactants: the magnitude of ε decreases towards a clean surface, but increases
when a surfactant-contaminated surface is approached. This can be explained by
looking at the horizontal velocity components (figures 6a and 6b). As the dynamics
boundary conditions ((2.5) and (2.6)) state, the values of ∂u′/∂z and ∂v′/∂z vanish at
a clean surface. At a contaminated surface, however, the gradients in surface tension
(shown in figure 3) need to be balanced by surface-tangential stresses, which results
in non-zero values of ∂u′/∂z and ∂v′/∂z. Consequently, the energy dissipation rate is
enhanced substantially when the surface is contaminated.

The term Dk represents the viscous diffusion of turbulent kinetic energy, 〈u′
iu

′
i/2〉,

in the vertical direction. It is determined by the profile of 〈u′
iu

′
i/2〉(z) in which

contributions from the horizontal velocity components dominate near the free surface.
As a clean surface is approached, turbulent fluctuations increase slightly owing to the
reduction in dissipation. The term Dk moves energy from the near-surface region to
the region below. In the surfactant case, on the other hand, turbulent kinetic energy is
smaller near the surface. Therefore, as figure 6 shows, the viscous diffusion Dk inputs
a significant amount of energy at the surface.

Finally, the vertical transport due to turbulent velocity fluctuations is represented
by the term T v . In the equation for the vertical velocity component, the pressure
fluctuations also contribute to the transport process, which is measured by the term
T p . Figure 6 shows that these terms are substantially different between the clean and
contaminated cases. This is expected because of the different constraining mechanisms
on the turbulent fluctuations by the surfaces. We also note that at a surfactant surface,
unlike in the clean-surface case, the dissipation term ε and the viscous diffusion D

dominate. This phenomenon resembles somewhat the flow near a solid wall where ε

and D balance each other (Mansour, Kim & Moin 1988). The balance between ε and
D is, however, not exact at a surfactant-contaminated free surface, and the difference
is accounted for by the pressure transport term T p .



92 L. Shen, D. K. P. Yue and G. S. Triantafyllou

 0
Dvv

DvvT v
vv

T v
vv

εvv εvv
Φvv

Φuu

Φvv

(b)     (i)

–0.5z

–1.0
–0.001 0 0.001

 0
(ii)

–0.5

–1.0
–0.001 0 0.001

 0

Duu
Puu

Tv
uu

εuu Φuu

Duu

PuuTv
uu

εuu

(a)      (i)

–0.5z

–1.0
–0.001 0 0.001

 0
(ii)

–0.5

–1.0
–0.001 0 0.001

Figure 6(a, b). For caption see facing page.

The underlying mechanism for surfactant effects on the turbulent kinetic energy
can also be explained in terms of coherent vortical structures. Figure 7(a) shows a
snapshot of the vortical structures near a surface laden with surfactant. The vortical
structures near the free surface are relatively simple and tracing vortex lines is easy and
effective (we have also used other methods, for example, vortex identification based
on eigenvalue of the velocity gradient tensor, obtaining essentially the same results).

Figure 7(a) shows three types of vortex structure: surface-connected vortices which
terminate at the surface (almost perpendicularly at low Froude numbers); hairpin
vortices with the ‘head’ located near the surface pointing in the y-direction and the
two ‘legs’ extending to the bulk sheared flow; and Marangoni surface vorticity. The
Marangoni surface vorticity is new in the presence of surfactants and is generated by
the non-uniform distribution of surfactant concentration and surface tension. These
vortices are comparable in magnitude to the other vortical structures in the flow and
are generally in the form of closed rings just above and upstream of the hairpin
vortices.

For statistics of the instantaneous vortex events such as those in figure 7, we
employ a conditional-averaging technique to obtain ensemble-averaged data. The key
idea of this method is to identify the turbulence structure of interest and then to
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Figure 6. Terms in the turbulent fluctuation budget equations for (a) 〈u′2〉, (b) 〈v′2〉, (c) 〈w′2〉,
and (d) 〈u′

iu
′
i/2〉: P , production rate; Φ , pressure–strain correlation; ε, dissipation rate; D,

viscous diffusion; T v transport due to velocity fluctuations; T p transport due to pressure
fluctuations. (i) Clean surface; (ii) contaminated surface.

employ statistics for the flow field around the structures (e.g. the VITA method for
experiments, Blackwelder & Kaplan 1976; and the VISA method in simulations, Kim
1983; Hartel et al. 1994; Piomelli, Yu & Adrian 1996).

Our interest here is the contributions of the hairpin and the Marangoni surface
vorticity to the evolution of the turbulent kinetic energy. To obtain this, we define the
event of interest to be when the head portion of hairpin vortices approach the surface.
Since such events are characterized by large magnitudes of ωy , we define the variable-
interval space-averaging quantity:

ωy(x, y, z, t, W ) ≡ 1

4W 2

∫ x+W

x−W

∫ y+W

y−W

ωy(ξ, ζ, z, t) dξ dζ, (3.6)

where W is the half width of the averaging window (set to be the macroscale of ωy

in the present case). To identify strong ωy events, we use a localized variance

ωvar
y (x, y, z, t, W ) ≡ ω2

y(x, y, z, t) − ω2
y(x, y, z, t, W ). (3.7)
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Figure 7. Distribution of surfactant concentration γ , surface vorticity (ωx, ωy) and coherent
vortical structures (represented by vortex lines: green for surface-connected, red for hairpin,
and blue for Marangoni surface vortices) in (a) an instantaneous flow field, and (b) the
conditionally average flow field. Note that only select coherent vortices in the domain are
plotted for illustration in (a).
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Strong near-surface hairpin head events are detected if ωvar
y > c(ωrms

y )2 at some (small)
value of z =Z. In this case, the threshold level is set at c =15 and the detection depth
is set at Z = −0.28.

For each detected hairpin vortex event, the coordinates are transformed horizontally
so that all the events are centred at (0, 0, Z). Ensemble averaging is then performed.
With due care in selecting the events, we show in figure 7(b) the results after averaging
over 2000 events. Compared to figure 7(a), the conditionally averaged data is much
smoother, while both the hairpin vortex and the accompanying Marangoni surface
vorticity are captured faithfully.

Figures 8 and 9 show features of the conditionally averaged flow field (figure 7b)
on the vertical section (x, z; y = 0) and at the free surface (x, y; z = 0), respectively.
For both the clean and contaminated surface cases, the head portion of the hairpin
vortices (positive ωy) is shown clearly in the ωy contours plotted in figure 8(b). Because
of flow induction by the head and legs of the hairpin vortices, fluid particles upstream
of the hairpin are swept towards the surface (figure 8a), causing a splat at the surface
(figure 9a).

The events associated with figures 8 and 9 turn out to be the main mechanism
of transfer of turbulence energy to surface deformations. Figure 9(b) shows that
the surface is elevated just upstream of the hairpin vortex where upwelling occurs.
Above the vortex, the surface is depressed by the fluid vortical motions. Comparison
between the clean and contaminated cases, however, shows that the further effect
of surfactants on the free-surface elevation is small. This is confirmed in the time
evolution of hrms in figure 10. As expected, hrms scales with Fr2 (the small values of
hrms/Fr2 are due to the normalization of Fr by the mean flow velocity and not that
of the turbulence fluctuations) and the presence of surfactants (slightly) reduces hrms.
The initial rise and subsequent later-time decrease of hrms can be readily explained
in terms of the evolution of the bulk flow turbulence kinetic energy. Finally we note
that while the effect of the flow on the surface deformation is manifest, the effect of
free-surface elevation on the underlying turbulence is small for the Froude-number
range we consider, for both the clean (see P1) and contaminated surfaces.

Figure 9(b) also shows the vector plots of the surface vorticity. The surface vorticity
caused by surfactant (the Marangoni surface vorticity) in this case is two orders
of magnitude larger than that on the clean surface. The natures of these vortices
are different. At a clean surface, surface vorticity is entirely associated with surface
deformation (Batchelor 1967; Longuet-Higgins 1998) which, at the present low Froude
numbers, is small. The Marangoni surface vorticity, however, is generated by variation
in the surface tension. From (2.5)–(2.7), we obtain the Marangoni surface vorticity

ωx ≈ − Re

We

∂σ

∂y
=

ReMa

We

∂γ

∂y
,

ωy ≈ Re

We

∂σ

∂x
= −ReMa

We

∂γ

∂x
,


 (3.8)

which are tangent to the contour lines of the surfactant concentration (figure 9c).
Upstream of the hairpin vortex, surfactant concentration is decreased by the upwelling
resulting in a circular region of lower γ with ring-like contours (figures 7 and 9c).
The resultant Marangoni surface vorticity is thus also ringlike, just upstream of a
rising hairpin, and has an opposite sign to that of the hairpin in the region near the
hairpin head (see figure 8b).

We remark that the Marangoni surface vorticity in the present three-dimensional
flow is weaker than the same vorticity obtained in two-dimensional studies (e.g. Bernal
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Figure 10. Time evolution of free-surface-elevation fluctuation hrms/Fr2. Box, Fr = 0.1; circle,
Fr = 0.3; diamond, Fr = 0.447; triangle, Fr = 0.707. Filled and hollow symbols represent clean
and contaminated surfaces, respectively.

et al. 1989; Hirsa & Willmarth 1994; Tsai & Yue 1995; Smith et al. 2001). One
indicator is the surface concentration where figure 9(c) shows only a small reduction
of γ , whereas in Tsai & Yue (1995), for example, a pair of rectilinear vortices approach-
ing the surface is able to create a ‘clean hole’ in the upwelling region. Consequently,
strong surfactant-flow interaction features such as rebounding of the primary vortex
and wrapping of the secondary vortex around the primary one are not observed here.
Instead we still observe vortex connection similar to that observed in the clean-surface
case (shown in P1).

Despite the above, the presence of Marangoni surface vorticity has a substantial
impact on the underlying flow, notably in decreasing the magnitude of the upwellings.
The drastic reduction of surface divergence near a surfactant surface can be seen from
horizontal velocity vectors (u′, v′) and contours of surface divergence (∂u/∂x + ∂v/∂y)
plotted in figure 9(a), as well as the contours of (∂u/∂x + ∂v/∂y) on the vertical section
(figure 8c).

The upwellings associated with hairpin vortices and their reduction by Marangoni
surface vorticity directly affect the budgets of Reynolds stresses and turbulence kinetic
energy. Figure 11 plots the distributions of the pressure–strain correlation terms,
p′∂u′/∂x, p′∂v′/∂y and p′∂w′/∂z, which measure the energy redistribution among
different velocity components. Away from the surface, the inter-component energy re-
distributions are similar with or without surfactants. At a splat, energy goes from the
vertical to the horizontal (Perot & Moin 1995; Walker, Leighton & Garza-Rios 1996)
with, however, more of it going into the transverse versus streamwise component
(Handler et al. 1993). Because of the present free shear-flow, such horizontal aniso-
tropy is expected, while for open-channel flows, the anisotropy would be diminished
for higher Reynolds numbers (Calmet & Magnaudet 2003). The mechanism for this
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Figure 11. Contours of the pressure–strain correlation terms (a) p′∂u′/∂x, (b) p′∂v′/∂y, and (c) p′∂w′/∂z in the conditionally averaged flow
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Figure 12. Contours of the transport terms −∂(u′
i
2
w′/2)/∂z on the horizontal plane

(x, y; z ≈ −0.03) in the conditionally averaged flow field. (a) Clean surface; (b) contaminated
surface.

horizontal anisotropy is now understood in terms of the dynamics of coherent vortex
structures and their interactions with the free surface (Nagaosa 1999). Such anisotropy
can also be observed in more complex free-surface flows such as the flow in the corner
between a free surface and a solid wall (see e.g. Broglia, Pascarelli & Piomelli 2003).
In the presence of surfactants, the magnitudes of the pressure–strain correlation terms
are greatly reduced because of the suppression of surface divergence. A very similar
mechanism is also responsible for the drastic reduction in the turbulent transport near
the surface as shown in figure 12 in the upward transport upstream of the upwelling.

In contrast to the above, the turbulence dissipation and viscous diffusion terms
are enhanced in the presence of surfactant. Figure 13 shows the large dissipation
above the hairpin vortex in the region with large gradients in surface tension, and
large Marangoni surface vorticity or shear (figure 8). The latter has been observed in
other free-surface surfactant flows, e.g. the vortex pair (Smith et al. 2001), submerged
turbulent jet (Anthony et al. 1991), and flow with a stagnant film (Scott 1982;
Harber & Gulliver 1992; Warncke, Gharib & Roesgen 1996). Since viscous diffusion
is associated with the vertical variation of the fluctuation magnitude, this diffusion
is enhanced near the surface by surfactant, which restricts the fluid motion on the
surface (figure 14).

3.4. Summary and discussion on Marangoni-number dependence

In the previous subsections, we elucidate the important effects of surface contamina-
tion by comparing the results for Ma = 0.1 with those of a clean free surface (Ma = 0).
These include: (a) decrease in velocity fluctuations; (b) increase in surface-tangential
vorticities and decrease in surface-normal vorticity; (c) substantial decrease in surface
divergence; and (d) increase in the dissipation and viscous diffusion of the turbulent
kinetic energy and decrease in the energy production, pressure–strain redistribution,
and turbulence transport.

In practice, the Marangoni number can vary over a large range. Our direct simula-
tions show that the above effects are generally manifest when Ma increases beyond
a small value. The magnitudes of these effects continue to grow with increasing Ma
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and may (eventually) saturate even for moderate Ma (beyond which further increase
in Ma has no appreciable effect). Figure 15 plots the ratios of contaminated (Ma > 0)
to clean surface (Ma = 0) values of several typical surface quantities discussed in
§ § 3.1–3.3 for a range of Ma (plotted on a logarithmic scale).

As the Marangoni number is increased, both u′rms and ω′rms
z are reduced gradually.

Their values at high Ma are still comparable to the values in the clean surface case.
The surface divergence, on the other hand, is much more sensitive to the Marangoni



102 L. Shen, D. K. P. Yue and G. S. Triantafyllou

0
10–4 10–3 10–2 10–1

0.2

Clean surface Contaminated surface

0.4

0.6

0.8

1.0

Ma

Figure 15. Ratios of the contaminated to the clean surface values of u′rms (�), ω′rms
z (�), and

(∂u/∂x + ∂v/∂y)′rms (�) at the surface, as functions of Ma.

number. It starts to drop sharply as Ma exceeds a small value around 0.005. This
sensitivity to small Marangoni number value is in agreement with the results of Smith
et al. (2001) who found that for their two-dimensional case, the surfactant effects are
prominent even for Ma ∼ 10−3. For higher Ma, say Ma

∼
> 0.05, the r.m.s. value of the

surface divergence is close to zero. Thus, as shown in § 3.2, the surface divergence is
the most prominent feature of surfactant effects we have found. This effect results in
a qualitative change in the fluid upwelling and downwelling motions.

4. Theoretical consideration
The DNS results in § 3 show the prominent effects of surfactants on turbulent

flows. To understand the underlying mechanisms better and to obtain a precise and
convenient description of the surface-layer structure, we obtain here a theoretical
framework for the surfactant effects on the mean flow. We first derive a similarity
solution to quantify the multi-layer structure of the surface boundary layer (§ 4.1).
The predictions of the similarity solution are then verified against direct numerical
simulations (§ 4.2). Based on this analytic solution, we obtain in § 4.3 the scaling laws
for the thickness of the respective surface layers. These are also confirmed using DNS
results.

4.1. An analytic similarity solution for the mean flow

In P2, we found that the structure of the turbulent boundary layer near a clean
surface can be characterized by the profile of the mean shear rate. As the free surface
is approached, the shear rate first increases over the outer layer and then decreases
quickly over the inner layer. In the presence of surfactants, this qualitative description
still obtains, but the variation of the mean shear is much sharper (figure 16a).
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Figure 16. Profiles of (a) the mean shear rate ∂〈u〉/∂z; (b) the Reynolds stress 〈−u′w′〉;
and (c) the eddy viscosity νe . ————, the clean-surface case Ma = 0 (t = 60); – – –, the
contaminated-surface case Ma = 0.1 (t = 70).

We take plane averaging of the x-momentum equation and obtain the governing
equation for the mean flow:

∂〈u〉
∂t

= −∂〈u′w′〉
∂z

+
1

Re

∂2〈u〉
∂z2

=
∂

∂z

((
1

Re
+ νe

)
∂〈u〉
∂z

)
. (4.1)

Here, the eddy viscosity νe (normalized by U0L0) is defined based on the Reynolds
stress 〈−u′w′〉 and the mean shear rate ∂〈u〉/∂z:

νe ≡ 〈−u′w′〉
∂〈u〉/∂z

. (4.2)

Figure 16 also plots the profiles of 〈−u′w′〉 and νe. Both the Reynolds stress and the
eddy viscosity decrease as the free surface is approached, because of the constraint
of the surface on the vertical motion w′. Figure 16(c) shows that at the clean surface,
the value of νe is small but non-zero. P2 argued that the eddy viscosity has a value
very close to the value of the molecular viscosity at a clean free-surface (this was also
shown by the results of Nagaosa 1999). At the contaminated surface, on the other
hand, figure 16(c) shows that the eddy viscosity has a value much smaller than the
molecular viscosity. This has an appreciable effect on the structure of the boundary
layer.

At the free surface, horizontal averaging of the dynamic boundary condition (2.5)
yields

∂〈u〉
∂z

= 0 on z = 0. (4.3)

Note that in the presence of surfactants, although locally ∂u/∂z at the surface may
fluctuate because of surface elasticity (figure 4), the gradients in the surface tension
(equation (2.5)) serve as internal forces when plane-averaging is performed and
therefore on average the surface is shear free. Because of the vanishing of ∂〈u〉/∂z,
at the free surface we obtain a special form of eddy viscosity by applying l’Hopital’s
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rule to (4.2):

νe|z=0 =
∂〈−u′w′〉/∂z|z=0

∂2〈u〉/∂z2|z=0

. (4.4)

Note that at a boundary where the mean shear is non-zero, such as a solid wall or a
sheared air–water interface, (4.2) yields a zero eddy viscosity. At a shear-free surface,
however, νe is not necessarily zero and its value must be calculated from (4.4).

As shown above, the governing equation and the free-surface boundary condition for
〈u〉 are effectively the same for the clean-surface case and the surfactant-contaminated
case, and we can obtain a self-similar solution for 〈u〉 in a way identical to the clean-
surface case. The complete derivation of the similarity solution for a clean surface
was given in P2, and here we present the results only.

The mean velocity profile is described by a self-similar form

〈u〉 − U∞

Ud

= f (η), (4.5)

where Ud = 〈u〉|z=0 − U∞ is the velocity deficit, with U∞ ≡ 〈u〉|z→−∞. In our simulation,
we set the free-slip bottom (cf. figure 1) to be sufficiently deep so that U∞ =Uz=−H ≈ 0
at all times considered in this paper. In (4.5), η is the similarity variable

η = z/b, (4.6)

with b measuring the extent of the mean shear in the flow. Note that both Ud and b

are functions of time.
The eddy viscosity is expressed as

νe

Udb
= ψ(η), (4.7)

where ψ is some function of the similarity variable, and it measures the variation of
eddy viscosity as the free surface is approached. We denote by ψa the value of ψ well
below the free surface, i.e. outside the outer layer; and by ψ0 the value of ψ at the
free surface.

Similar to P2, we derived that

Udb = C0, (4.8)

b =
√

2(ν + Udbψa)t + Q, (4.9)

and

Ud =
C0√

2(ν + Udbψa)t + Q
, (4.10)

where C0 and Q are constants.
The shape of the mean velocity profile is

f (η) = exp

(
−

∫ η

0

s(ν + Udbψa)

ν + Udbψ(s)
ds

)
. (4.11)

Equation (4.11) provides the dependence of the mean flow profile on the variation
of eddy viscosity as a function of the distance from the free surface. It contains the
essential physics of turbulent diffusion near the surface and forms a basis for our
analysis.
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Re= 700 Re= 1000 Re= 1400

t Ud b C0 Ud b C0 Ud b C0

70 0.683 1.741 1.189 0.627 1.831 1.149 0.608 1.876 1.141
75 0.659 1.802 1.187 0.604 1.892 1.142 0.587 1.940 1.140
80 0.635 1.864 1.184 0.582 1.959 1.140 0.568 1.997 1.134
85 0.612 1.927 1.179 0.562 2.031 1.142 0.550 2.057 1.132
90 0.590 1.999 1.179 0.544 2.102 1.144 0.533 2.127 1.134

Table 2. Variation with time of the mean velocity deficit Ud , the mean shear extent b, and
the product C0 = Udb, for different Re. Ma = 0.1.

It is found that the eddy viscosity profile (figure 16) can be approximated by a
Gaussian profile:

ψ =
νe

Udb
= ψa − (ψa − ψ0) exp(−η2/a2)

=


ψa −

(
ψa − 1

C0Re

)
exp(−η2/a2) clean surface,

ψa − ψa exp(−η2/a2) contaminated surface,

(4.12)

where a is the thickness of the outer layer normalized by the shear flow extent b.
Note that (4.12) is consistent with the eddy viscosity having the value of molecular
viscosity (ψ0 = 1/(C0Re)) at a clean surface, and being negligibly small (ψ0 ≈ 0) at a
contaminated surface.

Finally, using (4.12), we obtain from (4.11):

f (η) = exp (−η2/2)

[
1/(C0Re) + ψ0

1/(C0Re) + ψa − (ψa − ψ0) exp(−η2/a2)

]a2/2

=




exp (−η2/2)

[
2/(C0Re)

1/(C0Re) + ψa − (ψa − 1/(C0Re)) exp(−η2/a2)

]a2/2

clean surface,

exp (−η2/2)

[
1/(C0Re)

1/(C0Re) + ψa − ψa exp(−η2/a2)

]a2/2

contaminated surface.

(4.13)

4.2. Comparison between theoretical similarity solution and numerical results

We compare the similarity solution in § 4.1 to results of our direct numerical
simulations. The comparison is performed as follows. The value of velocity deficit Ud ,
the bulk eddy viscosity ψa , and the surface eddy viscosity ψ0 are obtained directly
from numerical results based on their definitions. The shear extent b is determined by
matching f (η) in (4.13) with the numerical value at the depth η = −1, and the value
of a is obtained by a least-squares best fit of (4.12).

The obtained parameters are given in tables 2 and 3. Figures 17, 18 and 19 compare
profiles of eddy viscosity mean velocity and mean shear, respectively. In general, the
numerical data agree with theoretical solutions with remarkable accuracy. Different
cases with different Reynolds numbers are all represented well by the analytic solution.
In each case, the DNS data at different times, which have different physical values,
all collapse onto the curve predicted by the similarity solution.
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Re C0 Q ψa ψ0 C0Reψ0 a a
√

C0Reψa ε
√

C0Re ε/a

(a) 700 1.04 −0.65 0.0228 1.40 × 10−3 1.05 0.305 1.24 0.115 10.2
1000 1.02 −0.14 0.0229 0.98 × 10−3 1.00 0.251 1.21 0.078 9.9
1400 1.01 −0.03 0.0224 0.78 × 10−3 1.10 0.215 1.21 0.058 10.1

(b) 700 1.18 −1.09 0.0230 0.37 × 10−5 n/a 0.418 1.82 0.091 6.3
1000 1.14 −0.54 0.0232 0.28 × 10−5 n/a 0.356 1.83 0.067 6.4
1400 1.14 −0.42 0.0237 0.22 × 10−5 n/a 0.308 1.89 0.049 6.4

Table 3. Values of C0, Q, ψa , ψ0, a and ε, for the clean- (Ma =0) and contaminated-surface
(Ma = 0.1) cases at different Re. (a) Ma = 0, (b) Ma = 0.1.

Table 2 gives the variation with time of the mean shear extent b, the mean velocity
deficit Ud , and the product C0 =Udb for the contaminated-surface case Ma = 0.1. The
clean-surface data (Ma = 0) is given by P2 and will not be repeated here. We find that
the variation of b and Ud agrees well with the predictions (4.9) and (4.10) to within 2%
(results not shown here). Table 2 also shows that C0 = Udb remains strictly constant
to within 1%. The constant value of C0 in time shows the momentum conservation
in our solutions. The deviation of C0 from the unit value is due to the fact that we
chose for normalization the initial profile (2.10), when the truly physical free-surface
turbulence has not been developed. Indeed, normalization based on Ud and b of the
similarity solution will be more physical.

Figure 17 compares the profiles of the eddy viscosity between the analytic expression
(4.12) and the DNS data. The contaminated-surface case with different Reynolds
numbers of Re= 700, 1000, 1400 are shown. For comparison, we also plot the clean-
surface case with Re = 700. The eddy viscosity variation as a function of the distance
from the surface is approximated well by the Gaussian profile. For a specific Reynolds
number, despite the fact that the surface-layer thickness changes as time evolves,
the normalization using the similarity variable makes all the data collapse onto a
single curve. Comparison between figures 17(a) and 17(b) shows that the free-surface
outer layer (the region over which the eddy viscosity decreases) is thicker in the
contaminated-surface case than that in the clean-surface case. Comparison among
figures 17(b), 17(c) and 17(d) shows that the outer layer becomes thinner as the
Reynolds number increases. This can be seen more clearly from the values of a given
in table 3.

Figure 17 shows that in the bulk flow, the eddy viscosity is the same for all cases.
This can be seen more clearly from the values of ψa given in table 3. This is
expected because the Reynolds number and the free-surface condition do not affect the
turbulent diffusion process in the bulk flow far below the surface. At the free surface,
however, the eddy viscosity is very much affected by the presence of surfactants. At
the clean surface, the fact that C0Reψ0 remains a unit value (table 3) means that the
eddy viscosity has a value of molecular viscosity. We can also see from table 3 that
the value of eddy viscosity at the contaminated surface is much smaller (by two orders
of magnitude) than that at a clean surface.

The profiles of the mean velocity and mean shear are compared in figures 18 and 19,
respectively. We can see that the similarity solution agrees with the DNS results with
remarkable accuracy. Of significant importance, the similarity solution, which is a
function of the Reynolds number, is applicable to the DNS cases with different Re.
For each case, despite the fact the physical values of the mean velocity and mean shear
change in time (figure 2), the normalization again makes all the data points collapse
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Figure 17. Comparison of the eddy viscosity profile between the similarity solution (————)
and the DNS results for: (a) the clean-surface case (Ma= 0), Re= 700; �, t = 60; �, t =70;
�, t = 80; and the contaminated-surface cases (Ma = 0.1) with (b) Re= 700, (c) Re =1000 and
(d) Re= 1400; ◦, t = 70; �, t =80; �, t =90.

onto the theoretical curve. Notably, the similarity solution accurately captures the
rapid variation of the mean shear near the free surface.

Comparison between the clean- and contaminated-surface cases in figure 19 shows
that surface contamination makes the near-surface peak of the mean shear about
twice as large as that in the clean-surface case. Comparison of figures 19(b), 19(c) and
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Figure 18. Comparison of the mean velocity profile between the similarity solution
(————) and the DNS results as for figure 17.

19(d) further shows the decreasing of surface-layer thickness as the Reynolds number
increases. The underlying mechanisms for these phenomena are discussed in the next
section.

4.3. The scaling laws of the free-surface boundary layer

The analytic solution (4.11) specifies the dependence of the mean flow profile on
the variation of eddy viscosity. It forms a basis for the quantitative description of
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Figure 19. Comparison of the mean shear profile between the similarity solution (————)
and the DNS results as for figure 17.

the free-surface boundary-layer structure. Similar to P2, we define the surface outer
layer as the region where the eddy viscosity decreases and the mean shear increases.
The surface inner layer is defined as the region where the eddy viscosity becomes
comparable to the molecular viscosity and the mean shear decreases to the zero
surface-value.
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In principle, we can use the small-argument approximation of (4.11) to obtain the
thickness of the outer and inner layers. On the other hand, our DNS results show
that the eddy-viscosity profile can be approximated by a Gaussian profile and as a
result, the integration in (4.11) can be obtained explicitly in (4.13). This analytic and
explicit expression greatly facilitates our analysis.

We first consider the inner-layer thickness. Using a small-η expansion, we can write
(4.13) as

f (η) ≈




(1 − η2/2)

[
2/(C0Re)

2/(C0Re) + ψaη2/a2

]a2/2

clean surface,

(1 − η2/2)

[
1/(C0Re)

1/(C0Re) + ψaη2/a2

]a2/2

contaminated surface.

(4.14)

Let ε be the thickness of the inner layer (normalized by b). Using a dominant balance
argument for the expression in the denominator on the right-hand side of (4.14), we
obtain

ε ∼
{√

2aψ−1/2
a C

−1/2
0 Re−1/2 clean surface,

aψ−1/2
a C

−1/2
0 Re−1/2 contaminated surface.

(4.15)

The above equation can also be obtained by searching for the location where the
maximum value of the mean shear occurs based on the profile (4.13).

Equation (4.15) shows that the ratio of the inner-layer thickness to the outer-layer
thickness is proportional to Re−1/2. This ratio in the clean-surface case is

√
2 times

larger than that in the contaminated-surface case. These predictions are directly
confirmed by our simulation results shown in table 3, as indicated by the numerical
value of

√
C0Re ε/a. In table 3, the numerical value of ε is defined based on the

location where the mean shear reaches its maximum value.
We next consider the outer-layer thickness. Consider the mean shear profile f ′

which is the first derivative of (4.14). We find that the maximum shear sm ≡ f ′|max ,
which occurs at the location given by (4.15), has the value

sm ∼
{

a (C0Reψa)
1/2 /(2

√
2) clean surface,

a (C0Reψa)
1/2 /2 contaminated surface.

(4.16)

Given that sm remains bounded as Re increases (cf. figure 19), a is given by

a ∼ (C0Reψa)
−1/2. (4.17)

Therefore, the ratio of the outer-layer thickness to the mean shear extent (note that a

is normalized by b) is also proportional to Re−1/2. This prediction is again confirmed
by the DNS data given in table 3, as indicated by the numerical values of a

√
C0Reψa .

Table 3 also shows that this ratio is larger in the contaminated-surface case than in
the clean-surface case. In other words, the outer layer is thicker below a surfactant-
contaminated surface. This difference together with the different formulation of the
maximum shear (equation (4.16), which is caused by a different value of eddy viscosity
at the free surface) make the maximum shear in the contaminated-surface case about
twice as large as that in the clean-surface case (figure 19).

To summarize, our theoretical analysis and numerical simulation obtain consistent
scaling relationships for the free-surface boundary-layer structure. Both the ratio of
outer-layer thickness to the mean shear extent and the ratio of inner-layer thickness
to the outer-layer thickness scale as the Reynolds number to the power of minus
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a half. The surface condition affects the factors of proportionality. The first ratio
is larger in the contaminated-surface case than in the clean-surface case, while the
second ratio is smaller in the contaminated-surface case. In other words, for the same
mean shear extent and at the same Reynolds numbers, the outer layer is thicker near
a surfactant-contaminated surface than near a clean surface, while the inner layers
have about the same thickness.

4.4. Discussion

The proceeding sections elucidate the free-surface outer and inner layers, which can
be characterized by the increasing and decreasing of the mean shear as the free
surface is approached. Comparison between the surfactant-contaminated surface and
the clean surface results shows that: (i) the outer layer is thicker near a contaminated
surface; (ii) the surface value of eddy viscosity equals molecular viscosity at the clean
surface, but is negligibly small at a contaminated surface. From table 3, we see that
the first factor contributes to a 50% increase in the peak shear rate while the second
factor contributes another 40%.

Both these factors can be understood through the surface divergence (∂u/∂x +
∂v/∂y)|z=0 = −(∂w/∂z)|z=0. As shown in § 3.1, surface elasticity caused by the sur-
factant prohibits surface upwelling/downwelling flow (i.e. the splat/anti-splat motion).
As a result, (∂w/∂z)|z=0 is much smaller at a contaminated surface. Consider the
vertical velocity near a free surface. Taylor expansion gives

w(z) = w|z=0 +
∂w

∂z

∣∣∣∣
z=0

z + O(z2). (4.18)

Since w′ is responsible for turbulent diffusion in the vertical direction, and since the
outer layer is the region where turbulent diffusion is reduced owing to the presence
of the surface, (4.18) shows that a contaminated surface affects an outer layer more
deeply than a clean surface does.

The second factor, the difference in the surface value of eddy viscosity, can be
explained by rewriting (4.4) as

νe|z=0 =
〈−w′∂u′/∂z − u′∂w′/∂z〉|z=0

∂2〈u〉/∂z2|z=0

. (4.19)

In the numerator of (4.19), the second term dominates because of the small value of
w in the first term. As a result, the surface value of eddy viscosity is directly related
to surface divergence (∂w/∂z)|z=0 = −(∂u/∂x + ∂v/∂y)|z=0, and is much smaller in the
presence of surfactant.

Finally, we remark that although the physical parameters we choose for this problem
are not unrealistic (see § 2.2), the choice of a surface free-shear flow as our canonical
problem makes it more difficult to find experimental data for direct comparison.
From theoretical and computational points of view, the study of free shear flows
has advantages, such as the existence of the similarity solution for the mean flow
which offers a clear view of the boundary layer at the free surface. Most experiments
however have been performed on pressure/gravity-driven open-channel flows (e.g.
Nezu & Nakagawa 1993).

In order to test some of our basic findings obtained from this study, we have
obtained limited results (using the implicit numerical scheme) for open-channel flows
with clean and contaminated surfaces. The essential features we find for the free-shear
flow are all also observed here. Figure 20 shows representative results for the case of a
pressure-driven open-channel flow. In figure 20(a), mean velocity profiles are compared



112 L. Shen, D. K. P. Yue and G. S. Triantafyllou

–1.0

–0.8

–0.6

–0.4

z

–0.2

0 0.5

�u�

1.0

(a)

–1.0

–0.8

–0.6

–0.4

–0.2

0 0.2 0.30.1

d�u�/dz

0.4 0.5

(b)

Figure 20. Profiles of (a) mean velocity 〈u〉, and (b) mean shear d〈u〉/dz in open-channel
flows. ————, clean surface; – – – –, contaminated surface.

for the clean and contaminated surface cases. Higher values of the mean velocity
are observed near the surfactant surface, similar to the results shown in figure 2
for time-evolving free-shear flows. The surfactant effects are more distinct in the mean
shear profile (figure 20b). For the clean surface case, the local minimum and maximum
of the mean shear is weaker compared to those in free-shear flows (cf. figure 16a)
because of the presence of streamwise body forces (the shear profile becomes a
‘terrace’ between the lower boundaries of the outer and inner layers). The presence of
surfactants, however, causes drastic variation in the mean shear near the free surface,
which can be used to quantify the surface boundary layers. For the simulation shown
in figure 20, the Reynolds number based on the surface mean velocity and the channel
depth is 3700, which is well within the range of laboratory experiments (cf. table 1
in Kumar, Gupta & Banerjee 1998); the Marangoni number for the surfactant is 0.1,
also quite feasible for experiments, as discussed in § 2.2. Unfortunately, experimental
surfactant results here are, to our knowledge, still unavailable; and we hope that
results like those in figure 20 might provide an impetus for such measurements.

5. Conclusions
In this paper, we study the effect of surfactants on the boundary layer at a free

surface. The hydrodynamics of the flow studied are dictated by the Reynolds number
and the surfactant dynamics by the Marangoni number (the Froude number is allowed
to vary, but kept small while the Péclet and Weber numbers are kept constant).

The turbulent boundary layers near either a contaminated or clean (cf. P1, P2) free
surface share the following general features. The kinematic constraint of the surface on
the fluid vertical motions creates an outer layer within which the velocity is anisotropic.
At low Froude numbers, horizontal velocity fluctuations far exceed the vertical
velocity fluctuations and the anisotropy is maximum at the free surface. The flow
inside the outer layer, however, is not two-dimensional because of the existence of
upwellings and downwellings. Inside the outer layer and in the vicinity of the surface,
there exists a much thinner inner layer where the dynamic surface conditions governing
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the cross-surface stress balance are felt. Within the inner layer, quantities such as
vorticity and strain rate are highly anisotropic. This two-layer structure is distinct in
the profile of the mean shear. As the surface is approached, the mean shear rises over
the outer layer and drops sharply to zero over the inner layer. The boundaries of the
two layers can be defined precisely as the locations where the magnitude of the shear
exhibits a local minimum (outer layer) and maximum (inner layer).

The presence of surfactants, however, has a significant effect on important aspects of
the near-surface flow even for very small values of the Marangoni number. One effect
is that surfactant elasticity greatly reduces the flow divergence at the surface. This is
the result of a closed-loop effect where surface divergent/convergent motions resulting
from the up-/downwelling cause a decrease/increase in the surfactant concentration,
which in turn creates gradients in the surface tension to counter the fluid motion.
The picture is further clarified by consideration of the underlying vortical structures
in terms of the generation of Marangoni vorticity by hairpin vortices associated with
splats. As expected, surface contamination also reduces the near-surface turbulence
fluctuations. We are able to elucidate the mechanism through a quantification of the
terms in the turbulent kinetic energy equation. Near the surface, surface elasticity
increases dissipation and viscous diffusion, but reduces turbulence production, tran-
sport and inter-component redistribution compared to the clean case. In terms of
magnitude and sensitivity to Ma, however, we find that surface divergence, rather
than turbulence intensities, is clearly a better indicator of surface contamination.
The decrease of surface divergence and the associated reduction in upwelling and
downwelling also has significant implications to near-surface turbulent transport. One
example of such processes is the surface renewal associated with gas transfer across
the air–water interface (Shen 2001).

As mentioned above, the maximum and minimum of the mean shear profile
offer quantitative indicators of the surface multi-layer structure. These extrema are
much more distinct when the surface is contaminated by surfactants. To understand
the underlying mechanism and to obtain the scaling laws for the surface-layer
thickness, we develop an analytic similarity solution for the mean flow. The theoretical
predictions of the mean flow profile agree with our direct numerical simulations with
remarkable accuracy. The similarity solution predicts that the thickness of the outer
layer is proportional to the depth of the mean shear flow, while the thickness of the
inner layer is proportional to that of the outer layer. In both cases the thickness
ratios scale as Re−1/2. These scaling laws are also confirmed by our numerical results.
By taking into account the reduction effect of surfactants on surface divergence,
the similarity solution also predicts the observation in simulations that compared
to the clean-surface case, the outer layer in the presence of surfactants is thicker while
the inner layer has approximately the same thickness. This analytic similarity solution
provides theoretical insights for the underlying mechanisms and establishes a basis
for the development of physics-based turbulence models.

We have made (mostly) qualitative/indirect comparisons to physical measurements
where they are available. Laboratory measurements that can provide direct
quantitative comparisons to what we find are, however, absent and would clearly
be most desirable.

This research was financially supported by the Office of Naval Research. Most of the
computations were performed at the Naval Oceanographic Office (NAVOCEANO)
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Project under the DoD HPC Modernization Program.
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